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. Abstract

Activity analysis is introduced as a means to strategically cut away subspaces of a

design problem that can quickly be ruled out as suboptimal. This results in focused

regions of the space in which additional symbolic or numerical analysis can take place.

Activity analysis is derived from a qualitative abstraction of the Karush-Kuhn-Tucker

conditions of optimality, used to partition an optimization problem into regions which are

‘nonstationary and qualitatively stationary (gstationary). Activity analysis draws from the

fields of gradient-based optimization, conflict-based approaches of combinatorial

satisficing search, and monotonicity analysis.

I A previous version of this paper was published in DE-Vol. 83, 1995 Design Engineering Technical

Conferences (Design Theory and Methodology Conference), ASME , 2: 455-463, 1995; ASME grants

permission for Engineering Optimization to reprint that portion of this paper.



1. Introduction

Engineering design problems, due to their corﬂplexity,' are often best solved
through numerical optimization. For nonlinear problems, numerical codes often require
user guidance to quickly move towards the global optima. However, it is difficult for an
engineer to extract from the numerical solution insights about the subspace where the |
_ optimum lies. The design space may be vast; however, the global optimum, or potential
local optima, can often be determined to lie within distinct regions of the space. Insight
into where those regions lie not only reduces the (numerical) optimization problem
considerably, but allows the designer to investigate the influences and sensitivities of
different variables and constraints to the objective. function throﬁgh a detailed analysis
within the reduced region. These investigations provide insight into more fundamental
changes to a design such as modifying the device structure or topology.

New-generation CAD tools provide the capability to symbolically model and
analyze design problems within the CAD environment. We propose a technique called
activity analysis for reasoning about symbolic design models that provides the ability to
computationally partition the design space into regions where the optima provably cannot
lie, and smallést regions in which a point is possibly optimal. The design system then
focuses on those regions where the solution may lie. The power of activity analysis to
eliminate large suboptimal subspaces is derived from Qualitative KKT (QKKT), an
abstraction in qualitative vector algebra of the foundational Karush-Kuhn-Tucker (KKT)
conditions of optimization theory. As KKT provides the foundation for continuous
nonlinear numerical optimization algorithms, so too can QKKT provide a foundation for
combinatorial algorithms for nonlinear symbolic problems2. Power is derived by

merging.these novel combinatorial algorithms with numerical methods. Activity analysis

2in the spirit in which traditional combinatorial approaches such as the Simplex Method tackle linear

problems.



is one such algorithm that partitions a design problem into sméller problems that can
subsequently be pursued by KKT-based numerical algorithms or other symbolic methods.

Activity analysis is striking in the way it merges together three styles of search
that are traditionally viewed as quite disparate: First is the rich suite of more tactical,
numeric methods (e.g., Vanderplaafs 1984; Papalambros and Wilde 1988) used in
continuous optimizing search to climb locally but monotonically towards the optimum.
The second is the more strategic, conflict-based approaches used in combinatorial,
satisficing search to eliminate finite, inconsistent subspaces (e.g., de Kleer & Williams
1987). Activity analysis draws from the power of both perspectives, strategically cutting
away subspaces that it éan quickly rule out as suboptimal.

The third style of search is the symbolic optimization approach of monotonicity
analysis, derived from the Monotonicity Principles (Wilde 1975; Papalambros and Wilde
1979; Papalambros 1982) which examines the well-boundedness of an optimization
problem, thereby indirectly partitioning the design space into regions which satisfy the
first-order necessary conditions of optimality. Papalambros and Wilde provided a
mathematical method to systematize the engineering insight of optimal problem solving.
Choy and Agogino (1986), Michelena and Agogino (1993), Rao and Papalambros (1987),
Azarm and Papalambros (1984), and Hansen, et al., (1989) automated this insight with
rule-based and graph-based programs.

Inspired by these three approaches, activity analysis provides a formal theory, and
a simple algorithm, for optimally partitioning a design space, that is sound and complete.
Activity analysis uses a qualitative version of the Karush-Kuhn-Tucker conditions of
optimality that embodies the principles of monotonicity analysis. All points in a region
identified by ac.tivity analysis as non optimal violate KKT; any points in a regibn
identified by the technique as qualitétively optimal satisfy QKKT. Activity analysis
generates these regions from an explicit statement of QKKT through a prime assignment

algorithm analogous to the prime implicant algorithms used in satisficing search. Finally,



activity analysis may use any available numerical methods to explore the remaining

subspaces, thus complementing traditional methods.

2. Motivating Example: Hydraulic Cylinder

To demonétrate the task consider the design of a hydraulic cylinder (Figure 1) as
introduced by Wilde (Wilde 1975) to demonstrate the related technique of monotonicity
analysis. Given as variables the inside diameter .(i), the wall thickness (t), the hoop stress
(s), the force (f), and the pressure (p), the problem is to parametrically minimize the
diameter of the cylinder, modeled as inside diameter plus twice the wall thickness,
subject to an upper bound on the hoop stress (S), a lower bound on the force (F), an upper
bound on the input pressure (P), and a lower bound on the wall thickness (T), and
physical relations modeling stress and pressure; positivity coﬁditions are assumed (i.e., i,

s, t, p, £ >0). The optimization problem is modeled as?:

Minimize: i + 2t

subjec(to:
pi
-—= h, =0),
2 0 (b=0)
f._ﬂp:() h2=0),

s—S<0

3Design variables are in lowercase, fixed parameters in uppercase, and equality and inequality constraints

are labeled h; and g, respectively.



The optimization problem has three degrees-of-freedom (DOF) --.tl"lve variables and two
equality constraints -- resulting in a bounded three-dimensional space. Figure 2
illustrates the characteristics of this space in terms of s, t, and p

Activity analysis idéntiﬁes that the stationary points, and thus the optima, must lie
in two subspaces. The new problem formulation finds the optima of the two spaces and
combines the results-as follows (where "arg min" returns a set of optima):
Given: vector X = (istpt)T ,
1. Let Y = arg miny (i + 2t)

subject to:

h1=0)  (2=0) (g1=0) (8250) (g3<0) (g4=0).
2. Let Z = arg miny (i + 2t)

subject to:

(h1=0)  (h2=0) (81=0) (g2=0) (g3=0) (g4<0).
3. Return arg miny (i + 2t), subject to:

xe YUZ.

Figure 2 indicates the reduced subspaces, one showing 31 in which g1 and g4

become strict equalities resulting in optimum Y (2a), and the other one showing 32 in

which g1, g2, g3, become strict equalities resulting in optimum Z (2b). Search within

these subspaces reduces from 3 DOF to search within a line (.1 DOF) and search at a
point (0 DOF). Visually it is striking to note the reduction in the size of the space in
which search must take place.

The remainder of this paper reviews the definition of a ‘stationary point and the
Karush-Kuhn-Tucker (KKT) conditions of optimality prior to deriving a qualitative form
of KKT which we call the Qualitative Karush-Kuhn-Tucker conditions (QKKT). From
QKKT, activity analysis is derived and applied to both the hydraulic cylinder and a
torsion beam problem. We compare the characteristics of activity analysis to that of

monotonicity analysis before concluding.



3. Stationéry Points and Karush-Kuhn-Tucker

For a point x* to be an optimum it is necessary that the point be stationary, that is any
"down hill" direction is blocked by the constraints. Activity analysis exploits this fact to
eliminate sets of points that can quickly be proven to be nonstationary, using a condition
we call Qualitative Karush-Kuhn-Tucker (QKKT). This section reviews the optimization
problem, the concept of a stationary point, and the traditional algebraic (Karush-Kuhn-
Tucker) condition for testing stationary points. Activity analysis applies to the pervasive

family of linear and non-linear, constrained optimization problems OP = (x,f, g, h):

Find x* = arg min f(x)
subject to: gx)<0
h(x) =0,

where column vectors are denoted in bold (e.g., X, x*, g(x) and h(x)), f(x) is the objective
function, g(x) is a vector of inequality constraints and h(x) is a vector of equality

constraints. The problem formulation assumes negative null form. A point x € R1 is
feasible if it satisfies the constraints, and feasible space 3 < R"™ denotes all feasible
points (represented 3 = (g, h)). A feasible direction S from a feasible point is one
through which a non-zero distancé can be moved before hitting a constraint boundary.
f(x) is decreasing at x in direction § if Vf(x)- § < 0. Finally, a point is stationary
(denoted x*) if any direction that decreases the objective is infeasible4. The Karush-

Kuhn-Tucker (KKT) conditions (Karush 1939; Kuhn & Tucker 1951) provide a set of

4 Not all stationary points are local minima; a stationary point satisfies only the first-order necessary

conditions of optimality (not sufficiency), and thus local maxima and saddle points are also stationary.



vector equations that are satisfied for a feasible point x* 'exactly when that point is

stationary?>:

Vix*) + AT Vhx*) + pT vgx*) = 0T (KKT1)

subject to:

nleex®) = 0T, (KKT2)
Lo 0. (KKT3)

pT transposes column vector W to a row. Gradients Vf, Vg and Vh denote Jacobian

X, o, j o,

]

matrices. Vf is a row vector (ﬁ e ) Vg and Vh are matrices (%) and (ﬂj,

respectively, where (aijj) denotes a matrix whose element in the ith row and jth column is

ajj, for all i and j. For example KKT1 and KKT2 are equivalencies between row vectors,

and KKT3 is a relation between column vectors.
Rewriting KKT1 as:

—Vi(x*) = AT Vh(x*) + puT vgx),

the —Vf term denotes directions of decreasing objective from x*, the term (AT Vh (x*) +
uT Vg (x*)) denotes infeasible directions from x*, and the equality says the decreasing
objective directibns are all infeasible; hence, x* is stationary. More specifically, §
decreases the objective if it has a coinponent in the —Vf direction (S-Vf < 0). A direction
is infeasible with respect to inequality constraint gj(x*) if x* lies on the constraint
boundary (gi(x*) = 0) and it has a component in the +Vgj(x*) direction. A direction is
infeasible with respect to equality constraint hj(x*) if it has a component in either the -V

hj(x*) or +th(x*) direction. Most importantly, if x* lies on multiple constraint

boundaries, then an infeasible direction has a component which is a linear, weighted

3 Note that a stationary point that is on a boundary is sometimes referred to as a “constrained stationary
point” or a “KKT point”; our use of the term “stationary” is for any point that satisfies the KKT conditions

and thus encompasses the use of these terms.



combination of the above gradients for these constraints. The' weights are |1 and A (called
Lagrange multipliers), and the combination is uTVg +ATVh subject to KKT2 and
KKT3. Hence all decreasing directions are infeasible when —Vf equals one of these
linear combinations (KKT1). Figure 3 shows an example of Vg gradient vectors (Vg1
and Vg3), and the combined weighted vector, W, which exactly cancels Vf.

A key property of KKT is that it identifies active inequality constraints.
Intuitively, a constraint (gj) is active at a point x when x is on the constraint boundary and
the direction of decreasing objective, VT, is pointing into the boundary. When this is true
Mi is positive. The basis of our approach is to conclude, by looking at signs of p, that the
stationary points lie at the intersection of the constraint bouhdaries; one or more

constraints have been identified as active, hence the name activity analysis.

4. Qualitative KKT Conditions

Qualitative KKT (QKKT) is an abstraction of KKT that is a necessary, but insufficient,
condition for a point being stationary. It is the means by which activity analysis quickly
rules out suboptimal subspaces. Qualitative properties used by QKKT to test a point x
include whether each constraint is active at x, and the quadrants of the coordinate axes
each gradient Vf, Vg and Vh lies within. These properties can be extracted quickly and
hold uniformly for large subsets of the feasible space, and parameterized families of
optimization problems. QKKT and manipulations by activity analysis rely on a matrix
version of SR1 - a hybrid algebra combining signs and reals. This algebra behaves as one
expects given a familiarity with (scalar) sign algebra and traditional matrix algebra (see

(Williams 1991)). Essentially, the sign of a quantity is determined when possible. The

6 In two dimensions the space is divided into four regions or quadrants; in n-dimensions we use the term

quadrant to indicate the analogous n-dimensional regions.



result is one of four values, namely + if the quantity is pdsitivé, 2 if the quantity is
negative, O if the quantity is zero, and ? if the quantity is unknown. If the sign of a
quantity is desired, it is specified by placing that quantity within square brackets (e.g., [X]
for x> 0is +, while [x - y] is ? unless additional information is known).

Derived from KKT, QKKT states that a feasible point x* is stationary only if:

(V)] + [MT [Vhee)] + [u]T [Vex®] 20T, (QKKTI)
subject to

T [gx*)] = 0T, and (QKKT2)

Wil # =, (QKKT3)

where [v], called a sign vector, denotes the signs of the elements of v, such that

[vi]e {A,O,-T-}. Recall that KKT said that to be stationary there must exist a weighted

sum (W) of Vg and Vh that exactly cancels Vf (note W is a row vector). QKKT says a
point is nonstationary unless there exists a w that lies in the quadrant diagonal from that
which contains V{. For example, in Figure 3, Vf lies in the upper left quadrant; thus, a w

must exist that lies in the lower right. The sign vector [v] denotes the quadrant
containing a vector v, and each component [Vvi] describes where v lies relative to the vj =
0 plane. For example [W]= (4— L) indicates that w is in the lower right quadrant.
Using this algebraic representation, the condition on Vf and W lying in diagonal
quadrants is expressed by —[V{]=[w].

We note from KKT that the quadraﬁt W lies within is [W] = [pTVg + ATVh].
Using only knowledge of the quadrant each constraint's gradient lies within and whether
each constraint is active (indicated by the signs of the Lagrange multipliers [p] and [A]),
it follows from the properties of sign algebra that the quadrants w may lie within are a
subspace of those described by [].L]T [Vg] + (AJT[Vh]. Thus, —[Vf]=[Ww] S [p,]T [Vgl
+ [MT[Vh] (i.e., QKKT1). For example, in Figure 3 (Section 3) since Vg1 (= & )

lies in the upper right and Vg2 (=(= 2)) lies in the lower left, it is possible for a w to



lie in the lower right; thus, any x satisfying these conditions may be stationary. But
suppose Vg1 is replaced with Vg'1, which lies in ihe upper left for points in some feasible
subspace 31. Then W may lie in the upper or lower left, but not the lower right; thus, all
points in 31 must be nonstationary. That is, evaluating —[Vf] and [u]T [Vg] using Vg1
and Vg7 for Vg satisfies the subset relation of QKKT1:

)69 (0]

(+ 2 <

>

However, evaluating these expressions using Vg'1 and Vg2 for Vg doesn't satisfy the

subset relations:

¢4 el ) =@ ) [L J;J_

Thus points characterized by Vg1 and Vg2 may be stationary while those characterized
by Vg'1 and Vgp are nonstationary. It is this second type of conclusion, made from only
qualitative properties, that activity analysis uses to eliminate feasible subspaces of
nonstationary points.

KKT has provided the foundation for a large body of work on gradient-based
numerical analysis. Likewise, QKKT provides the foundation for a set of symbolic,
combinatorial techniques. We present one such technique (activity analysis) which
manipulates QKKT directly. As will be discussed in Section 8, monotonicity analysis is

a different technique whose principles follow as a consequence of QKKT.

S. Instantiating QKKT

Instantiating QKKT1 on optimization problem OP = (x, f, g, h) involves three steps:
1. Compute Jacobians V£, Vg and Vh by symbolic differentiation.

2. Compute the signs of the Jacobians. For each element,

(a) replace real operators with sign operators, using properties:

10



* [atb] < [a] + [b],
* [ab] = [a][b],
* [a/b] = [a}/[b] and
* [~a]=—[a].
(b) Substitute for sign variables [a] using positivity conditions ([a] = -T—).
(c) Perform sign arithmetic (e.g., [5] = +, [2]+[2]= 2).
3. Expand QKKT1 by expanding matrix sums and products.
Returning to the hydraulic cylinder problem, recall that x is the vector (it f s p)T, the

objective f(x) is i + 2t, and the constraint vectors are:

The following shows Vh after steps 2a (top) and 2b (bottom):

el [plli] ]
S I DR U )
ATl o g o ol

[2]

Repeating for [Vf] and [Vg] and inserting into QKKTI:

11



—+>
_/
3

0 0 = 0 O
—’*\- A A
=+ 0O + = TO = 0 0 0
0"clo| +[A] +{u] -
-~ 0 + 0 = O 0 0 0 +
O .
0O 0 0 % o
0

Expanding matrix operations for step 3 results in equations QKKT1(1)-(5):

0 = (#)-[M]-2]
0 < ()-[w]+M] @
0 c  Hw]+r] @
0 < [w]+M] @
0 c [us]-[M]-[22] ®

For ease of reading we write terms ¥ [xi] as [xi], 2 [xil, as —[xi], and elimihated terms
O[xi], where xj represents Aj or Kj. Note that the computation of sign matrices in step 2 is

extremely simple, but surprisingly adequate for many problems. The symbolic algebra
system Minima (Williams 1991) can provide a reasonably general tool for deducing the

J(x)

signs of sensitivities (e.g., [T}) subject to x satisfying the equality and inequality
Xj

constraints. We have thus far developed a condition that is easily evaluable yet sufficient
for testing the suboptimality of infinite subspaces. We turn next to a technique called

activity analysis that uses QKKT to strategically focus the search for optima.
6. Activity Analysis and Prime Assignments

Activity analysis reduces an optimization problem to a set of simpler subproblems by

"cutting" out feasible subspaces that are suboptimal. These subspaces contain all and

12



only those points that can be proved nonstationary according to QKKT7 The output of
activity analysis is a concise description of the remainder, a miniral covering composed
of maximum gstationary subspaces, called a minimal gstationary covering. It is a set of
feasible subspaces (and corresponding optimization problems), at least one of which is
guaranteed to contain the true optimum. Thus three key features of the descriptions
generated by activity analysis are parsimony, correctness and maximization of the
"filtering" achievable using QKKT. This section states and demonstrates the activity
analysis problem and an algorithmic instantjation. The core is a mapping between
minimal gstationary subspaces and prime assignments, and a general prime assignment
engine for systems of ﬁnear sign equations.

To start we say a point is gnonstationary if it follows from QKXKT that it is
nonstationary; otherwise, it is gstationary. A feasible subspace is gstationary if all its
poihts are gstationary, and gnonstationary if all its points are qnonstationary. Activity
analysis maximizes its use of QKKT while preserving correctness by eliminating exactly
the gnonstationary subspaces from its description of the feasible space. This description
is built from a set 3, whose elements result from strengthening one or more of the
inequality constraints gj < O to strict equalities gj = 0; that is, 2. is the powerset of
constraint boundary intersections. The description (called a minimal gstationary
covering), covers the gstationary points by collecting all dstationary subspaces that are
maximal under superset. These cover every gstationary subspace. The activity analysis
problem is then: given optimization problem OP = (X, f, g, h) and instantiation of
QKKT (= QKI{T(OP)), construct the minimal gstationary covering C.

Mapping QKKT(OP) to C relies on two observations: First, from QKKT2 (=
'[ui(x)][gi(x)] = 0) it follows that [Ui(x)] = 3 —> gi(x) = 0. That is, any point where [u;]

"Recall that a point is stationary if and only if it satisfies KKT. In analogy we say a point is gstationary if

and only if it satisfies QKKT.

13



= ¥ must be on the gi = 0 constraint boundary. Thus, when activity analysis shows that
a subspace of gstationary points makes [j] = + for one or more gj's, it concludes that

these points lie along the intersection of the gj boundaries. Second, a particular set of

variable assignments for QKKT1, called prime (implicating) assignments, directly maps
to the minimal gstationary covering by applying the first observation. The key here is
that achieving parsimony, maximum filtering and correctness reduces to generating

complete prime assignments.
We define a (partial) assignment to [X] as a set A which assigns each [xj] at most

one value, A C {[Xi] = slxi €X,S E{A,O,-T-}}. We are interested in the consistent

assignments to QKKT1, where the [x] to be assigned is a vector of Lagrange multipliers
([u]T[k]T)T. Additionally, the consistent assignments must also satisfy the restriction of
QKKT3 ([uj] # =). Note that each consistent assignment C has a corresponding subset S
of feasible space, produced by making active those constraints with [i] = % and adding
them to the original constraint set. S has the property that every point in S satisfies

assignment C. Since each C satisfies QKKT, any point in its corresponding S may be a

stationary point. Note that a partial assignment assigns any of {L,O,-?-} to the Lagrange
multipliers, while a consistent assignment assigns only those of {-‘-,0,-?-} that satisfy the
restriction that [tj] # 2, |

Next, an i’mplicating assignment Y is a consistent assignment to QKKT1, such that
whenever an extension to 7y satisfies restriction QKKT3, it also is consistent with
QKKT1. That is, given restriction QKKT3, assignment yimplies QKKT1. An
implicating assignment has the important property that every point in its corresponding
subspace S satisfies QKKT. Thus S is a gstationary subspace. Essentially this means
that an implicating assignment is one such that QKKTI is satisfied; it is partial in that
additional consistent assignments can also be made.

Finally, a prime assignment P is an implicating assignment no proper subset of

which is also an implicating assignment. Thus P's corresponding S is a maximal

14



qstationary subspace. Conversely, every maximal qst'atior‘lary subspace is the
corresponding subspace of some prime assignment. Thus ‘the set of subspaces
corresponding to all prime assignments is a minimal gstationary covering. The prime
assignments are thus the smallest assignments that still consistently imply QKKT]1.

To produce all pfimes for QKKT1, our prime assignment engine first compﬁtes the

primes Pj of each scalar equation in QKKT1, then combines them using minimal set

covering. Pulling this all together, the activity analysis algorithm is:

- Given problem OP = (x,f, g, h):

1. Instantiate QKKT1 producing QKKT1(OP).

2. Compute prime assignments, Pj, of each QKKT1;(OP) € QKKT1(OP).

3. Compute minimal set covering of Pj producing Piotal. Delete inconsistent
assignments.

4. Extract minimal sets of [lj] = ¥ assignments from Pyoa) producing U’.

5. Remove supersets from U’ producing U.

6. Map each element of U to a maximal gstationary subspace by applying
Li®)] = + — gix) =0, producing a covering, C.

7. Presume that n+1 equations overdetermine the solution, removing those subspaces.

8. Formulate and return a new optimization problem from C.

Various algorithms to instantiate activity analysis are feasible. One described in
Williams and Cagan (1994) is presented here. Step one was demonstrated in the previous
section. For steps two and three we note that QKKT1 tékes the form 0 < [B] + [A][x],
with [A] and [B] being sign constant matrices, [X] an n vector, [A] an n by m matrix and
[B] an m vector. In particular, xT is (uT ?»T)T, [B] = [VA], and [A] is the matrix
(Vg Vh). For the hydraulic cylinder (Section 5), QKKT1 has 5 equations, with x =
(11021314r1A2)T . We know [pi] # 2 from QKKTS3.

15



For step 2, the prime assignments of each QKKT1 equation are constructed from
three sets of scalar assignments, consistent with non-negativity of u: those restricting one
of the equation's terms ([2ij1[xj]) to be positive (Pj), those making a term zero (%), and
those making a térm ﬁegative (Nj), respectively. For each QKKT1 equation, there are
two possibilitieé:

a

1. bj= %, where [bi] = l:a
Xi

} (the analogous argumeht holds for bj = 2). For QKKT1
m o R ~ .

to hold for that equation, Y, [aij ][x j] = ?,since 0 c (+) + (‘7) This holds exactly when at
=l

least one of the [ajj][xj] terms is negative (since 0c (-?—) +(2)= 7). For example, in the
cylinder QKKT equation (2), A] = 2 guarantees that the equation is satisfied. The only
other assignment that guarantees this is u2 = ¥. Thus the prime assignments for (2) are

(M= 2}and {p2= %}.
m PN

2.bj = 0. Here 3, [a;][x;] =0 or ? for QKKT1 to hold. For the first case, all terms
=1

must be 0. For the second case, at least one termm must be positive and one negative. For

example, [as(x)] = 0 in cylinder QKKT1(3): 0 < —[u1] + [A2]. Thus, the prime
Xj

assignments are {A2 =0, u] =0} and {A = g n1 = %}. Note that {A = 2, K1 =

21} is not acceptable, since by restriction [uj] # 2.

Recall for the cylinder that instantiating QKKT1 produced the following

equations:

0 c (H)-M]-[2] O
0 < (#)-[m]+M] @
0 c  —Hwml+] @
0 < [ug]+[M] @
0 c [ms]-[M]-[A2] ®

16



Constructing the prime assignments for these equations uses:

Nj Zi P
1{Ml= %20 = F |MI=0 A2l =0 [[Al= 2,[A2] = 2
2 [Ml= 2,2 =% [Ml=0[w2l=0 |[A1l= %
3 (A2l = 2,ul= % |A201=0,[ul =0 |A2]= %
4 [M1= 2, A1 =0, [wal =0 |[A1]= F,[ug]l = %
5 1= % M20= % |MI=0 A2l =0, [[Al= 2,[A2] = 2,
w3l =0 [u3) = +

The prime (implicating) assignments for the table of cylinder equatibns

QKKTI(1) - (5) are:

{IMl= F}, {A2]= %) P(1)
(M1 = 2}, {[u2] = +} P(2)
{A2]1=0,[u1] =0}, {[A2] = %, u1] = %}  PQ3)
{M1=0,[u4] =0}, {[M1] = 2, al= ¥} P&
{[AM11=0,[A2] = 0, [u3]=0},

{(Ml= #,A2] = 2}, {(M] = %, 3] = ¥},
{MI= 2,20 = F}{[A2] = %, [u3] = ¥} PO)

The third step, constructing the composite primes for QKKT1, is based on a
standard algorithm for minimal set covering (e.g., Corman, et al., 1990). The result is a
consistent set of prime assignments across all YQKKTl(i). More specifically, minimal set
covering is defined as follows: Given a set of sets S, a covering of S is a set ¢ which
contains at least one element of each s€S. A minimal set covering is a covering no

subset of which is also a covering. A minimal set covering algorithm returns all minimal

17



coverings given S.” Roughly speaking, a minimal set covering algorithm constructs all
smallest sets of assignments that select at least one prime assignment for veach QKKTI13).
Sets are thrown away that are inconsistent (i.e., assign conflicting signs) or are supersets
of other sets. Minimal set covering algorithms are worst-case exponential and the
minimal set covering problem is NP-complete. For the cylinder, the minimal covering of
P(1) - (5) produces just two prime assignments:

({A]= 2, 2] w4l = F),

{M1=0, 2] = %, [1]= %, [u2] = %, [u3]= ¥, [ual = 0}}.

1

s

E
1

The fourth step, extracting the minimal sets of [ui] = ¥ assignments, results in
{ln1]= +, [u4] = +} and {[w1] = ¥, [u21= ¥ , [u3] = +). The fifth step removes
supersets from these sets. There are none here; however, this step is necessary since the
minimal set covering produced in step 3 includes signs on the equality Lagrange
multipliers (AT). In activity analysis all equality constraints are accounted for; thus
different sub-region coverings differentiate only between active inequalities.

The sixth step uses the rule

| wil=% - gix =0
to map these sets to the equivalent minimal gstationary covering. The sets tell us that g1

and g4, or g1, g2, and g3 must be active. The resulting cover is:

31
32

({g2, g3}, {h1, h2, g1, g4,}) and

({g4}, {h1,h2, g1, g2, 83}) ,

where S = (g, h) is a space defined by inequality g and equality h constraints. 31 and 32

denote the line and point highlighted in the introduction to the cylinder example. The
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seventh step is to check for overdetermined spaces, of which there are none here. The

final step, formulating a new optimization problem, produces:

Given: S = {x*|x*=arg minxe G f(x),and S {31, 32 }},

Find: minxe S f(X)

The first part finds the minimum of each subspace in the covering. The second part
selects from these the global minimum. As was stated earlier in section 2, the

optimization problem for the hydraulic cylinder becomes:

1. Let Y = arg miny (i + 2t)

subject to:
(h1=0) (h2=0) €1=0) (22<0) (g3<0) (g4=0)

2. Let Z = arg miny (i + 2t)

subject to:

(h1=0) (h2=0) €1=0 (g2=0 (g3=0) (g4<0).

3. Return arg miny (i + 2t), subject to:

xe YUZ.

Again, the complexity of this problem is significantly reduced from that of the original
problem. Each subproblem describes the region by identifying active constraints; this

lends opportunity to gain insight into the optimum through further analysis.
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7. Example: Torsion Rod

Consider the design of a cylindrical rod under'torsion'load with the goal of
minimizing weight (Figure 4). The variables are the radius (r), the angle of deformation
(¢) and the maximum lshear stress (), while the input parameters are the applied torque
(T), length (L), maximum angle of deflection (¢max), minimum radius (rmjn), minimum
strength-to-weight ratio (SWmipn) and material density (p), yield stress (Ty) and shear
modulus of elasticity (G).

The optimization problem is modeled as:

min: - pL7x

subject  to: T— % =0 (h, =0)

2TL
¢——ﬂGr4=O (h,=0)
T-17,50 (g,<0)
I —I<0 (g,<0)

T

SW_. — <0. <0

min mez (g4 )

where x = (1, ¢, 7)T, and positivity is assumed.

Following again the steps of activity analysis:

Vi=(2pLar 0 0),

_S¢ _Gr

]
Ny L
Vh=| o7 :
- 1 o
nGr
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( 0 0 1
-1 0 0
Ve=| 1 0
27T 1

3 0 - 2

\ pPL7x pLnx

Taking the signs of the Jacobians:

[VE]=(+ o o),

~ 2 ol

[Vh]= o ,
+ + 0
(0 0 %
= 0 0

[Vg]= X ;
0 + 0
+ 0 =

QKKT1 becomes:

0c(#)-[AM]+[A2]-[p2]+[1a] ©
0 g—[k1]+[x2]+[u3] (2)
0 [Aq]+[m]—[1a] 3)

The terms used to form the prime assignments are:
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Z;

[A1]= 0,[A2] =0,

AMl= 2,[A2] =%,

[u2]=+ [u2]1=0, [u4]=0 [ugl= +
2 [[M]= F,A2]=2 [A1]= 0,[A2]1=0, Al= 2,[A2]= %,
3] =0 [u3l=+

3 [A1= 2, [ua1= %

[A1]1= 0, [u1]=0,

[ug] =0

Al= F,[uil= 7%

The prime assignments are:

{IM]= 3} {2] = 2}, (w2l = &)}

{{[A1] = 0,[A2] =0, [u3]= 0}, {[M] = 2,[A7]

{A2] = %, M1 = F} {[u3] = %, [A1] = §}

{lwsl = +, 2] = 2})

P(1)
2}
P(2)

{{IA1] = 0,[n1] =0, [p4] = 0}, {(A1] = F,[mal= %} P(3)

{1l = %, A1 = 2} {[u1l = %, 4l = 33}

The minimal set covering of P(1) - P(3) results in seven prime assignments:

{1 = +, 2] = F.mdl= F),

{AM] = 2,[A2] = 2,[u1]

{[A1] = 0,[A2] = 2,[u1]l= 0,[u3] = %, [u4]l = O},

{2l = 2,wl= % w3l = % [ug] = 3},

{[A11 = 0,[A2] = O,[nm1]1=0,[u2] = +,[u3] = O,[u4] = 0},
(M1 =0,[A2] = O,[wl= %, (w2l = %, [u3l = 0, [pa] = %},

(Ml = %, [u2l= %3] = F,[ual = 3}
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Extracting minimal sets [pj] = ¥, removing supersets, and mapping to a maximal

gstationary subspace (minimal gstationary covering) gives:

31 = ({g1. 82, g3} {h1, h2, g4}),
32 = ({g2, g3, g4} {h1, h2, g1},
33 = ({g1, 82, 24} {h1, h2, g3}),
34 = ({g1, £3, g4} {h1, 2, g2}),

where again (g, h) is a space defined by inequalities g and equalities h. Step 7 removes
overdetermined sets, of which there are none here.
Finally, the reduced optimization of the resulting sets (31, 32, 33, 34) becomes:
Given: -vectorx = (r ¢ 7)1,
1) Let W = arg miny (pLnr2),
subject to:
(h1=0) (h2=0) (g1=0) (g2=0) (g3<0) (g4=0).
2).  LetX = arg ming (pLnr2),
subject to: , .
(h1=0) (h2=0) (81=0) (g2=0) (g3<0) (g4<0).
3)  LetY = arg ming (pLnr2),
subject to:
(h1=0) (h2 =0) (81=0) (g250) (g3=0) (g4<0).
4)  LetZ = arg ming (pLmr2),
subject to:
(h1=0) (h2 =0) (81=0) (22=0) (g3<0) (g4<0).
5)  Return arg ming (pLnr2) |
subject to:

xe WuX uYUZ.
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The original problem has 1 DOF (3 variables, 2 eqliality constraints) while the
final problem reduces to four constraint-bound problems requiring no numerical

optimization.

8. Relation to Monotonicity Analysis

Monotonicity analysis provides the inspiration for activity analysis. Based on monotonic
arguments alone, the technique began as a set of principles and methods used by
modelers to identify ill-posed optimization problems. The technique was later extended
to partially solve optimization problems, identifying the global solution in constraint
bound monotonic problems. Monotonicity analysis (Wilde 1975; Papalambros and
Wilde 1979; Papalambros 1982) is based on two rules which test the boundedness of a

problem formulation:

Rule 1: If the objective function is monotonic with respect to a variable, then there
exists at least one active constraint which bounds the variable in the direction

opposite of the objective function.

Rule 2: If a variable is not contained in the objective function then it must be either
bounded from both above and below by active constraints, or not actively bounded at
all (i.e., in the latter case, any constraints monotonic with respect to that variable must

be inactive or irrelevant).

Both of these rules can be derived from QKKT. A third rule, introduced by Wilde
(1986), called the Maximum Activity Principle, guarantees that a solution will not be

overconstrained:

The number of non-redundant active constraints cannot exceed the total number of

variables.
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The Maximum Activity Principle has a similar effect as stép 7 in the activity analysis
algorithm. In monotonicity analysis active constraints are counted, while in activity
analysis resulting equalities are counted, even if they are irrelevant.

Applying monotonicity analysis (exhaustively applying the rules) produces
multiple sets of constraints such that all of the constraints in at least one set must be
active to provide a well bounded problem (this is a necessary but not sufficient
condition). As with activity analysis, the sets provide a reduced optimization problem
which, if constraint bound, may describe the global optimum, and otherwise requires less
numerical optimization.

Various levels of implementation of monotonicity analysis have been described in
Choy and Agogino (1986), Michelena and Agogino (1993), Rao and Papalambros (1987),
Azarm and Papalambros (1984), and Hansen, et al. (1989). Of particular relevance, Choy
and Agogino (1986) and Agogino and Almgren (1987) propose the use of monotonicity
as the basis of an intelligent optimal reasoning system. Cagan and Agogino use
monotonicity analysis within a framework to optimally expand the design space to search
for improved designs and induce optimal trends during the expansion process (Cagan and
Agogino 1987 and 1991).

The problem activity analysis addresses is similar in spirit to that of monotonicity
analysis; nevertheless, the approach differs. To analyze their relationship we discuss the
relation between the underlying principles, the output produced by both techniques, and
the algorithms used to produce those outputs. First, activity analysis operates directly on
an abstraction (QKKT) of the Karush-Kuhn-Tucker (KKT) conditions of optimization
theory. QKKT is sufficiently powerful that given only knowledge of monotonicities, the
conclusioﬁs about optimality made from QKKT and KKT are equivalent. In addition, the
two monotonicity principles can be derived from QKKT.

Second, the result of activity analysis is formulated precisely in terms of minimal

gstationary coverings that insure correctness, maximize the focus achievable using
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monotonicity information, and guarantee that the solution is parsimonious. In particular,
the covering is guaranteed to contain exactly those points satisfying QKKT. Thus, the
solutions are guaranteed to be correct (i.e., they contain all stationary points), yet
maximize focus by removing all points that can be proven nonstationary. Finally, the fact
that the qgstationary subspaces in the covering are maximal guarantees the simplicity of
the resulting description.

Although there is no formal statement characterizing the results of monotonicity
analysis, the result it produces and that of activity analysis are similar. There are,
-however, important conceptuai distinctions. The purpose of activity analysis is to
construct a concise description of those feasible points satisfying QKKT. The philosophy
of activity analysis is that the decisions about how to explore these subspaces are best
based on the rich set of methods provided by traditional numerical optimization or other
symbolic techniques. On the other hand, the goal of monotonicity analysis is to perform
a case analysis on an optimization problem which reduces the problem to a set of cases
each of which is as restricted as possible. Monotonicity analysis generates a decision tree
whose conditionals are properties of known design parameters and whose leaves are
optimization problems.

The cases generated using the monotonicity principles roughly correspond to the
gstationary subspaces of activity analysis. However, monotonicity analysis further
divides these cases into subcases by case splitting oﬁ whether or not each of the
remaining inequalities is active or inactive. This case splitting is repeated until no
inequalities remain, subject to the Maximum Activity Principle, or the solution is
uniquely determined.

For example, returning to the hydraulic cylinder problem, a monotonicity analysis

of the same problem reveals four cases in which the optima lie, namely:
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case 1: hp, g1, g2, g3 active, where h; must also be satiéﬁedg-

case 2: hy, hy, g1, g4 active;

case 3: hy, hy, g1, g2, g4 active;

case 4: hy, hy, g1, g3, g4 actiile.
Observing activity of inequality constraints only, note that cases 1 and 2 are identical to
the two sets of constraints generated by activity analysis. Figure 5 shows a tree of
constraint activity for this problem. The active constraints for a parent vertex is a subset
of those for each child. The bold line indicates where the tree ends for activity analysis,
while the tree for monotonicity analysis also includes both the vertices below the line.

This approach of monotonicity analysis to case splitting may be reasonable when
the cases are being evaluated by an engineer, since each case is simpler to understand and
the analysis can result in a parametric design chart. However, the danger is that the
search space becomes fragmented, imposing artificial constraints that the optimization
method is forced to respect. Thus, activity analysis defers these decisions to other
methods; with respect to automated analysis, activity analysis takes the perspective that
the way to explore and decompose the gstationary subspaces is best decided by the
numerical or symbolic nonlinear optimization method chosen to explore each subspace.
Finally, in terms of algorithms, the activity analysis algorithm is simple. It

reformulates the problem to one of generating prime assignments and introduces a
complete prime assignment engine. This guarantees that the three properties of the

output (i.e., parsimony, maximum focus and correctness) are achieved.

9. Concluding Remarks

Activity analysis provides the following contributions: It formalizes the strategic
way in which a modeler focuses optimization as the process of generating minimal
gstationary coverings. It introduces QKKT as a powerful condition for quickly

eliminating large, suboptimal subspaces. It exploits this condition through a novel
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problem reformulation based on the prime, implicating assignments of linear sign
equations. The activity analysis algorithm classifies the design space into gstationary and
qnonstationary subspaces, providing a reduced space in which further analysis can more
efficiently be performed. Activity analysis has been implemented in C running on a
Silicon Graphics Indigo and has been applied to a variety of engineering optimization
problems. Activity analysis can be extended to provide explainable optimizers, ones that
use QKKT to provide commonsense explanations about optimality. Possible directions
also include an extension to activity analysis for cases where monotonicities are only

partially known.
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